Spouted Beds is a comprehensive 13-chapter book that covers the spouting phenomenon and the special features and applications of spouted beds. After briefly discussing the history and features of spouted bed compared to fluidized bed, the book deals with the fluid and solid dynamics of spouted beds. The book then gives a description of the internal geometrical structure of a stable bed, as well as the estimation of maximum spoutable bed depth. The subsequent chapters examine the attrition and heat and mass transfer in spouted beds, both between fluid and particles and within particles. The book further discusses theoretical aspects on using a spouting bed in carrying out gas phase chemical reaction. It also describes the application of spouted bed to a large variety of mechanical, thermal, diffusional, and chemical processes, whether on the bench, pilot, or commercial scale. This is followed by a discussion on the various process and equipment modifications to a standard spouted bed that have been devised to achieve specific ends. The final chapter outlines some practical hints for the benefit of the spouted bed designer and operator. This book is an ideal resource text to spouted bed designers, operators, and manufacturers.

Fluidized bed (FB) combustion and gasification are advanced techniques for fuel flexible, high efficiency and low emission conversion. Fuels are combusted or gasified as a fluidized bed suspended by jets with sorbents that remove harmful emissions such as SOx. CO2 capture can also be incorporated. Fluidized bed technologies for near-zero emission combustion and gasification provides an overview of established FB technologies while also detailing recent developments in the field. Part one, an introductory section, reviews fluidization science and FB technologies and includes chapters on particle characterization and behaviour, properties of stationary and circulating fluidized beds, heat and mass transfer and attrition in FB combustion and gasification systems. Part two expands on this introduction to explore the fundamentals of FB combustion and gasification including the conversion of solid, liquid and gaseous fuels, pollutant emission and reactor design and scale up. Part three highlights recent advances in a variety of FB combustion and gasification technologies before part four moves on to focus on emerging CO2 capture technologies. Finally, part five explores other applications of FB technology including (FB) petroleum refining and chemical production. Fluidized bed technologies for near-zero emission combustion and gasification is a technical resource for power plant operators, industrial engineers working with fluidized bed combustion and gasification systems and researchers, scientists and academics in the field. Examines the fundamentals of fluidized bed (FB) technologies, including the conversion of solid, liquid and gaseous fuels. Explores recent advances in a variety of technologies such as pressurized FB combustion, and the measurement, monitoring and control of FB combustion and gasification Discusses emerging technologies and examines applications of FB in other processes.

This book describes how modeling fluid flow in chemical reactors may offer solutions that improve design, operation, and performance of reactors. Chemical reactors are any vessels, tubes, pipes, or tanks in which chemical reactions take place. Computational Flow Modeling for
Chemical Reactor Engineering will show the reactor engineer how to define the specific roles of computational flow modeling, select appropriate tools, and apply these tools to link reactor hardware to reactor performance. Overall methodology is illustrated with numerous case studies. Industry has invested substantial funds in computational flow modeling which will pay off only if it can be used to realize significant performance enhancement in chemical reactors. No other single source exists which provides the information contained in this book.

This reference details particle characterization, dynamics, manufacturing, handling, and processing for the employment of multiphase reactors, as well as procedures in reactor scale-up and design for applications in the chemical, mineral, petroleum, power, cement and pharmaceuticals industries. The authors discuss flow through fixed beds, elutriation and entrainment, gas distributor and plenum design in fluidized beds, effect of internal tubes and baffles, general approaches to reactor design, applications for gasifiers and combustors, dilute phase pneumatic conveying, and applications for chemical production and processing. This is a valuable guide for chemists and engineers to use in their day-to-day work.

The fluidized-bed reactor is the centerpiece of industrial fluidization processes. This book focuses on the design and operation of fluidized beds in many different industrial processes, emphasizing the rationale for choosing fluidized beds for each particular process. The book starts with a brief history of fluidization from its inception in the 1940’s. The authors present both the fluid dynamics of gas-solid fluidized beds and the extensive experimental studies of operating systems and they set them in the context of operating processes that use fluid-bed reactors. Chemical engineering students and postdocs as well as practicing engineers will find great interest in this book.

Chapters written by experts cover a wide range of subjects, providing a clear picture of the phenomena and mechanisms at work in the process of gas fluidization. Offers the reader a practical understanding of these phenomena and mechanisms. Because the technique of fluidization is used in many different industries for drying, combustion, catalytic reactions, granulation, calcination, etc., this text will be of considerable interest to many and various practitioners and researchers in chemical, mechanical, process and industrial engineering. Illustrative examples and design equations are given so that readers can make their own practical calculations.

Fluidized beds have gained prominence in many process industries (including chemicals, petroleum, metallurgy, food and pharmaceuticals) as a means of bringing particulate solids into contact with gases and/or liquids. Many fluidized bed operations are physical in nature (e.g. drying, coating, classification, granulation, and rapid heat transfer as in quenching or annealing). Other operations involve chemical reactions including the catalytic cracking of hydrocarbons, the manufacture of acrylonitrile and phthalic anhydride, the roasting of metallurgical ores, and the regeneration of spent catalysts. In recent years fluidized beds have been of special interest because of their potential as the central component in new processes for utilizing coal as a source of energy, notably in coal combustion and gasification processes. The fluidized bed offers a number of advantages over most other methods of contacting, in particular high rates of heat transfer, temperature uniformity and solids mobility. Among the disadvantages are particle losses by entrainment, attrition of solids, limited reactor efficiency due to gas bypassing and gas and solids backmixing, and difficulties in design and scale-up due to the complexity of fluidized beds. The International Fluidization Conference held in Henniker, New Hampshire, U.S.A. from 3-8 August 1980 was the fifth inter national congress devoted to the entire field of fluidization.

Reaction Engineering clearly and concisely covers the concepts and models of reaction engineering and then applies them to real-world reactor design. The book emphasizes that the foundation of reaction engineering requires the use of kinetics and transport knowledge to explain and analyze reactor behaviors. The authors use readily understandable language to cover the subject, leaving readers with a comprehensive guide on how to understand, analyze, and make decisions related to improving chemical reactions and chemical reactor design. Worked examples, and over 20 exercises at the end of each chapter, provide opportunities for readers to practice solving problems related to the content covered in the book. Seamlessly integrates chemical kinetics, reaction engineering, and reactor analysis to provide the
Fundamentals of Fluidized-bed Chemical Processes presents a survey of the design, operation, and chemical processes of fluidized-bed reactors. The book is composed of five chapters. The first chapter examines the basic physics of gas-solid fluidization. The second chapter shows how the physics of gas-solid fluidization may be combined with chemical kinetics to generate models of fluidized-bed reactors. Chapters 3 and 4 deal with two major applications of gas-solid fluidization, the Fluidized Catalytic Cracking process and the combustion and gasification of coal. The final chapter analyzes other processes used in the production of chemicals such as phthalic anhydride, acrylonitrile, and compounds of uranium. Undergraduate and postgraduate students of chemical engineering, engineers, chemists, and scientists will find this text useful.

In this Special Issue, one review paper highlights the necessity of multiscale CFD, coupling micro- and macro-scales, for exchanging information at the interface of the two scales. Four research papers investigate the hydrodynamics, heat transfer, and chemical reactions of various processes using Eulerian CFD modeling. CFD models are attractive for industrial applications. However, substantial efforts in physical modeling and numerical implementation are still required before their widespread implementation.

Fluidization Dynamics has been written for students and engineers who find themselves involved with problems concerning the fluidized state. It presents an analysis that focuses directly on the problem of predicting the fluid dynamic behaviour of a proposed fluidized system for which empirical data is limited or unavailable. The second objective is to provide a treatment of fluidization dynamics that is readily accessible to the non-specialist. The linear approach adopted in this book, starting with the formulation of predictive expressions for the basic forces that act on a fluidized particle, offers a clear way into the theory. The incorporation of the force terms into the conservation equations for mass and momentum and subsequent applications are presented in a manner that requires only the haziest recollection of elementary fluid-dynamics theory. The analyses presented in this book represent a body of research that has appeared in numerous publications over the last 20 years. L.G. Gibilaro has taken the opportunity to reorder much of the material in the light of subsequent knowledge, to correct minor errors and inconsistencies and to add detail and clarification where necessary. This material helps to form the basis for university course modules in engineering and applied science at undergraduate and graduate level, as well as focused, post-experienced courses for the process, and allied industries.

The third edition of Engineering Flow and Heat Exchange is the most practical textbook available on the design of heat transfer and equipment. This book is an excellent introduction to real-world applications for advanced undergraduates and an indispensable reference for professionals. The book includes comprehensive chapters on the different types and classifications of fluids, how to analyze fluids, and where a particular fluid fits into a broader picture. This book includes various a wide variety of problems and solutions – some whimsical and others directly from industrial applications. Numerous practical examples of heat transfer Different from other introductory books on fluids Clearly written, simple to understand, written for students to absorb material quickly Discusses non-Newtonian as well as Newtonian fluids Covers the entire field concisely Solutions manual with worked examples and solutions provided

Focuses on the major research developments which are pertinent to engineers concerned with predictive methods and design of fluidization beds.

Catalytic Reactors presents several key aspects of reactor design in Chemical and Process Engineering. Starting with the fundamental science across a broad interdisciplinary field, this graduate level textbook offers a concise overview on reactor and process design for students, scientists and practitioners new to the field. This book aims to collate into a comprehensive and well-informed work of leading
researchers from North America, Western Europe and Southeast Asia. The editor and international experts discuss state-of-the-art applications of multifunctional reactors, biocatalytic membrane reactors, micro-flow reactors, industrial catalytic reactors, micro trickle bed reactors and multiphase catalytic reactors. The use of catalytic reactor technology is essential for the economic viability of the chemical manufacturing industry. The importance of Chemical and Process Engineering and efficient design of reactors are another focus of the book. Especially the combination of advantages from both catalysis and chemical reaction technology for optimization and intensification as essential factors in the future development of reactors and processes are discussed. Furthermore, options that can drastically influence reaction processes, e.g. choice of catalysts, alternative reaction pathways, mass and heat transfer effects, flow regimes and inherent design of catalytic reactors are reviewed in detail. Focuses on the state-of-the-art applications of catalytic reactors and optimization in the design and operation of industrial catalytic reactors. Insights into transfer of knowledge from laboratory science to industry. For students and researchers in Chemical and Mechanical Engineering, Chemistry, Industrial Catalysis and practising Engineers.

Fluidization Engineering, Second Edition, expands on its original scope to encompass these new areas and introduces reactor models specifically for these contacting regimes. Completely revised and updated, it is essentially a new book. Its aim is to distill from the thousands of studies those particular developments that are pertinent for the engineer concerned with predictive methods, for the designer, and for the user and potential user of fluidized beds. Covers the recent advances in the field of fluidization. Presents the studies of developments necessary to the engineers, designers, and users of fluidized beds.

Market_Desc: Chemical Engineers in Chemical, Nuclear and Biomedical Industries. Special Features: Emphasis is placed throughout on the development of common design strategy for all systems, homogeneous and heterogeneous. This edition features new topics on biochemical systems, reactors with fluidized solids, gas/liquid reactors, and more on non-ideal flow. The book explains why certain assumptions are made, why an alternative approach is not used, and to indicate the limitations of the treatment when applied to real situations. About The Book: Chemical reaction engineering is concerned with the exploitation of chemical reactions on a commercial scale. Its goal is the successful design and operation of chemical reactors. This text emphasizes qualitative arguments, simple design methods, graphical procedures, and frequent comparison of capabilities of the major reactor types. Simple ideas are treated first, and are then extended to the more complex.

Since the late 1970s there has been an explosion of industrial and academic interest in circulating fluidized beds. In part, the attention has arisen due to the environmental advantages associated with CFB (circulating fluidized bed) combustion systems, the incorporation of riser reactors employing circulating fluidized bed technology in petroleum refineries for fluid catalytic cracking and, to a lesser extent, the successes of CFB technology for calcination reactions and Fischer-Tropsch synthesis. In part, it was also the case that too much attention had been devoted to bubbling fluidized beds and it was time to move on to more complex and more advantageous regimes of operation. Since 1980 a number of CFB processes have been commercialized. There have been five successful International Circulating Fluidized Bed Conferences beginning in 1985, the most recent taking place in Beijing in May 1996. In addition, we have witnessed a host of other papers on CFB fundamentals and applications in journals and other archival publications. There have also been several review papers and books on specific CFB topics. However, there has been no comprehensive book reviewing the field and attempting to provide an overview of both fundamentals and applications. The purpose of this book is to fill this vacuum.

Today's frustrations and anxieties resulting from two energy crises in only one decade, show us the problems and fragility of a world built on high energy consumption, accustomed to the use of cheap non-renewable energy and to the acceptance of existing imbalances between the resources and demands of countries. Despite all these stressing factors, our world is still hesitating about the urgency of undertaking new and decisive research that could stabilize our future. Could this trend change in the near future? In our view, two different scenarios are possible. A renewed energy tension could take place with an unpredictable timing mostly related to political and economic factors. This could bring again scientists and technologists to a new state of shock and awaken our talents. A second interesting and beneficial scenario...
could result from the positive influence of a new generation of researchers that with or without immediate crisis, acting both in industry and academia, will face the challenge of developing technologies and processes to pave the way to a less vulnerable society. Because Chemical Reactor Design and Technology activities are at the heart of these required new technologies the timeliness of the NATO-Advanced Study Institute at the University of Western Ontario, London, was very appropriate.

Fluidization is a technique that enables solid particles to take on some of the properties of a fluid. Despite being very widely used within the food processing industry, understanding of this important technique is often limited. Applications of Fluidization to Food Processing sets out the established theory of fluidization and relates this to food processing applications, particularly in: • Drying • Freezing • Mixing • Granulation • Fermentation This important and thorough book, written by Peter Smith, who has many years’ experience teaching and researching in food processing, is an essential tool and reference for food scientists and technologists, and engineers working within the food industry. Libraries, and research and development groups within all universities and research establishments where food science, food studies, food technology, physics and engineering are studied and taught should have copies of this useful book.

This book provides a comprehensive mechanistic interpretation of the transport phenomena involved in various basic modes of gas-liquid-solid fluidization. These modes include, for example, those for three-phase fluidized beds, slurry columns, turbulent contact absorbers, and three-phase fluidized beds, slurry columns, turbulent contact absorbers, and three-phase transport. It summarizes the empirical correlations useful for predicting transport properties for each mode of operation. Gas-Liquid-Solid Fluidization Engineering provides a comprehensive account of the state-of-the-art applications of the three-phase fluidization systems that are important in both small- and large-scale operations. These applications include fermentation, biological wastewater treatment, flue gas desulfurization and particulates removal, and resid hydrotreating. This book highlights the industrial implications of these applications. In addition, it discusses information gaps and future directions for research in this field.

Essentials & Applications of Food Engineering provides a comprehensive understanding of food engineering operations and their practical and industrial utility. It presents pertinent case studies, solved numerical problems, and multiple choice questions in each chapter and serves as a ready reference for classroom teaching and exam preparations. The first part of this textbook contains the introductory topics on units and dimensions, material balance, energy balance, and fluid flow. The second part deals with the theory and applications of heat and mass transfer, psychrometry, and reaction kinetics. The subsequent chapters of the book present the heat and mass transfer operations such as evaporation, drying, refrigeration, freezing, mixing, and separation. The final section focuses on the thermal, non-thermal, and nanotechnology-based novel food processing techniques, 3D food printing, active and intelligent food packaging, and fundamentals of CFD modeling. Features Features 28 case studies to provide a substantial understanding of the practical and industrial applications of various food engineering operations Includes 178 solved numerical problems and 285 multiple choice questions Highlights the application of mass balance in food product traceability and the importance of viscosity measurement in a variety of food products Provides updated information on novel food processing techniques such as cold plasma, 3D food printing, nanospray drying, electrospraying, and electrospinning The textbook is designed for undergraduate and graduate students pursuing Food Technology and Food Process Engineering courses. This book would also be of interest to course instructors and food industry professionals.

Chemical reaction engineering is concerned with the exploitation of chemical reactions on a commercial scale. It's goal is the successful design and operation of chemical reactors. This text emphasizes qualitative arguments, simple design methods, graphical procedures, and frequent comparison of capabilities of the major reactor types. Simple ideas are treated first, and are then extended to the more complex.

Chemical reaction engineering is at the core of chemical engineering education. Unfortunately, the subject can be intimidating to students, because it requires a heavy dose of mathematics. These mathematics, unless suitably explained in the context of the physical phenomenon, can confuse rather than enlighten students. Bearing this in mind, Reaction Engineering Principles is written primarily from a student's perspective. It is the culmination of the author's more than twenty years of experience teaching chemical reaction engineering. The textbook begins by covering the basic building blocks of the subject— stoichiometry, kinetics, and thermodynamics— ensuring students gain a
good grasp of the essential concepts before venturing into the world of reactors. The design and performance evaluation of reactors are conveniently grouped into chapters based on an increasing degree of difficulty. Accordingly, isothermal reactors—batch and ideal flow types—are addressed first, followed by non-isothermal reactor operation, non-ideal flow in reactors, and some special reactor types. For better comprehension, detailed derivations are provided for all important mathematical equations. Narrative of the physical context in which the formulae work adds to the clarity of thought. The use of mathematical formulae is elaborated upon in the form of problem solving steps followed by worked examples. Effects of parameters, changing trends, and comparisons between different situations are presented graphically. Self-practice exercises are included at the end of each chapter.

This volume, Fluidization, Solids Handling, and Processing, is the first of a series of volumes on "Particle Technology". Particles are important products of chemical process industries spanning the basic and specialty chemicals, agricultural products, pharmaceuticals, paints, dyestuffs and pigments, cement, ceramics, and electronic materials. Solids handling and processing technologies are thus essential to the operation and competitiveness of these industries. Fluidization technology is employed not only in chemical production, it also is applied in coal gasification and combustion for power generation, mineral processing, food processing, soil washing and other related waste treatment, environmental remediation, and resource recovery processes. The FCC (Fluid Catalytic Cracking) technology commonly employed in the modern petroleum refineries is also based on fluidization principles.

This book closes the gap between Chemical Reaction Engineering and Fluid Mechanics. It provides the basic theory for momentum, heat and mass transfer in reactive systems. Numerical methods for solving the resulting equations as well as the interplay between physical and numerical modes are discussed. The book is written using the standard terminology of this community. It is intended for researchers and engineers who want to develop their own codes, or who are interested in a deeper insight into commercial CFD codes in order to derive consistent extensions and to overcome "black box" practice. It can also serve as a textbook and reference book.

The proceedings of the 20th International Conference on Fluidized Bed Combustion (FBC) collect 9 plenary lectures and 175 peer-reviewed technical papers presented in the conference held in Xian China in May 18-21, 2009. The conference was the 20th conference in a series, covering the latest fundamental research results, as well as the application experience from pilot plants, demonstrations and industrial units regarding to the FBC science and technology. It was co-hosted by Tsinghua University, Southeast University, Zhejiang University, China Electricity Council and Chinese Machinery Industry Federation. A particular feature of the proceedings is the balance between the papers submitted by experts from industry and the papers submitted by academic researchers, aiming to bring academic knowledge to application as well as to define new areas for research. The authors of the proceedings are the most active researchers, technology developers, experienced and representative facility operators and manufacturers. They presented the latest research results, state-of-the-art development and projects, and the useful experience. The proceedings are divided into following sections: • CFB Boiler Technology, Operation and Design • Fundamental Research on Fluidization and Fluidized Combustion • CO2 Capture and Chemical Looping • Gasification • Modeling and Simulation on FBC Technology • Environments and Pollutant Control • Sustainable Fuels The proceedings can be served as idea references for researchers, engineers, academia and graduate students, plant operators, boiler manufacturers, component suppliers, and technical managers who work on FBC fundamental research, technology development and industrial application.

Designed to give chemical engineers background for managing chemical reactions, this text examines the behavior of chemical reactions and reactors; conservation equations for reactors; heterogeneous reactions; fluid-fluid and fluid-solid reaction systems; heterogeneous catalysis and catalytic kinetics; diffusion and heterogeneous catalysis; and analyses and design of heterogeneous reactors. 1976 edition.

"The fourth edition of Elements of Chemical Reaction Engineering is a completely revised version of the book. It combines authoritative coverage of the principles of chemical reaction engineering with an unsurpassed focus on critical thinking and creative problem solving, employing open-ended questions and stressing the Socratic method. Clear and organized, it integrates text, visuals, and computer simulations to help readers solve even the most challenging problems through reasoning, rather than by memorizing equations."--BOOK JACKET.
The definitive practical guide to choosing the optimum manufacturing process, written for students and engineers. Process Selection provides engineers with the essential technological and economic data to guide the selection of manufacturing processes. This fully revised second edition covers a wide range of important manufacturing processes and will ensure design decisions are made to achieve optimal cost and quality objectives. Expanded and updated to include contemporary manufacturing, fabrication and assembly technologies, the book puts process selection and costing into the context of modern product development and manufacturing, based on parameters such as materials requirements, design considerations, quality and economic factors. Key features of the book include: manufacturing process information maps (PRIMAs) provide detailed information on the characteristics and capabilities of 65 processes and their variants in a standard format; process capability charts detailing the processing tolerance ranges for key material types; strategies to facilitate process selection; detailed methods for estimating costs, both at the component and assembly level. The approach enables an engineer to understand the consequences of design decisions on the technological and economic aspects of component manufacturing, fabrication and assembly. This comprehensive book provides both a definitive guide to the subject for students and an invaluable source of reference for practising engineers. * manufacturing process information maps (PRIMAs) provide detailed information on the characteristics and capabilities of 65 processes in a standard format * process capability charts detail the processing tolerance ranges for key material types * detailed methods for estimating costs, both at the component and assembly level.

Chemical Reactor Modeling closes the gap between Chemical Reaction Engineering and Fluid Mechanics. The second edition consists of two volumes: Volume 1: Fundamentals. Volume 2: Chemical Engineering Applications. In volume 1 most of the fundamental theory is presented. A few numerical model simulation application examples are given to elucidate the link between theory and applications. In volume 2 the chemical reactor equipment to be modeled are described. Several engineering models are introduced and discussed. A survey of the frequently used numerical methods, algorithms and schemes is provided. A few practical engineering applications of the modeling tools are presented and discussed. The working principles of several experimental techniques employed in order to get data for model validation are outlined. The monograph is based on lectures regularly taught in the fourth and fifth years graduate courses in transport phenomena and chemical reactor modeling and in a post graduate course in modern reactor modeling at the Norwegian University of Science and Technology, Department of Chemical Engineering, Trondheim, Norway. The objective of the book is to present the fundamentals of the single-fluid and multi-fluid models for the analysis of single and multiphase reactive flows in chemical reactors with a chemical reactor engineering rather than mathematical bias. Organized into 13 chapters, it combines theoretical aspects and practical applications and covers some of the recent research in several areas of chemical reactor engineering. This book contains a survey of the modern literature in the field of chemical reactor modeling.

Advances in Chemical Engineering

Over the last decade, circulating fluidization or fast fluidization has developed rapidly, superseding standard bubbling fluidization in many applications; for example, fast fluidization provides a better means for controlling emissions from the combustion of high-sulfur fuels and excels when used in boilers in steam plant and power stations. China initiated the study of fast fluidization in the early 1970s. Focusing on the substantial research cultivated in that country, with Kwauk at the leading edge, this latest volume in the Advances in Chemical Engineering Series is written in the context of the international state of the art and addresses some of the most vital issues surrounding this fluidization method.

A concise and clear treatment of the fundamentals of fluidization, with a view to its applications in the process and energy industries.

The Omnibook aims to present the main ideas of reactor design in a simple and direct way. It includes key formulas, brief explanations, practice exercises, problems from experience and it skims over the field touching on all sorts of reaction systems. Most important of all it tries to show the reader how to approach the problems of reactor design and what questions to ask. In effect it tries to show that a common strategy threads its way through all reactor problems, a strategy which involves three factors: identifying the flow pattern, knowing the kinetics, and developing the proper performance equation. It is this common strategy which is the heart of Chemical Reaction Engineering.
This innovative approach to teaching the finite element method blends theoretical, textbook-based learning with practical application using online and video resources. This hybrid teaching package features computational software such as MATLAB®, and tutorials presenting software applications such as PTC Creo Parametric, ANSYS APDL, ANSYS Workbench and SolidWorks, complete with detailed annotations and instructions so students can confidently develop hands-on experience. Suitable for senior undergraduate and graduate level classes, students will transition seamlessly between mathematical models and practical commercial software problems, empowering them to advance from basic differential equations to industry-standard modelling and analysis. Complete with over 120 end-of chapter problems and over 200 illustrations, this accessible reference will equip students with the tools they need to succeed in the workplace.

“Simulation and Optimization of Furnaces and Kilns for Nonferrous Metallurgical Engineering” is based on advanced theories and research methods for fluid flow, mass and heat transfer, and fuel combustion. It introduces a hologram simulation and optimization methods for fluid field, temperature field, concentration field, and electro-magnetic field in various kinds of furnaces and kilns. Practical examples and a detailed introduction to methods for simulation and optimization of complex systems are included as well. These new methods have brought significant economic benefits to the industries involved. The book is intended for researchers and technical experts in metallurgical engineering, materials engineering, power and thermal energy engineering, chemical engineering, and mechanical engineering. Chi Mei, Jiemin Zhou, Xiaoqi Peng, Naijun Zhou and Ping Zhou are all professors at School of Energy Science and Engineering, Central South University, Changsha, Hunan Province, China.